Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cyber-physical systems (CPS) designed in simulators, often consisting of multiple interacting agents (e.g., in multi-agent formations), behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of anf-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime androbust conformal predictionto obtain probabilistic guarantees by accounting for distribution shifts. Building on our prior work, we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift.more » « lessFree, publicly-accessible full text available October 31, 2026
-
Free, publicly-accessible full text available May 27, 2026
-
Free, publicly-accessible full text available May 6, 2026
-
Apprenticeship learning crucially depends on effectively learning rewards, and hence control policies from user demonstrations. Of particular difficulty is the setting where the desired task consists of a number of sub-goals with temporal dependencies. The quality of inferred rewards and hence policies are typically limited by the quality of demonstrations, and poor inference of these can lead to undesirable outcomes. In this paper, we show how temporal logic specifications that describe high level task objectives, are encoded in a graph to define a temporal-based metric that reasons about behaviors of demonstrators and the learner agent to improve the quality of inferred rewards and policies. Through experiments on a diverse set of robot manipulator simulations, we show how our framework overcomes the drawbacks of prior literature by drastically improving the number of demonstrations required to learn a control policy.more » « less
-
This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps.more » « less
-
Uncertainty in safety-critical cyber-physical systems can be modeled using a finite number of parameters or parameterized input signals. Given a system specification in Signal Temporal Logic (STL), we would like to verify that for all (infinite) values of the model parameters/input signals, the system satisfies its specification. Unfortunately, this problem is undecidable in general.Statistical model checking(SMC) offers a solution by providing guarantees on the correctness of CPS models by statistically reasoning on model simulations. We propose a new approach for statistical verification of CPS models for user-provided distribution on the model parameters. Our technique uses model simulations to learnsurrogate models, and usesconformal inferenceto provide probabilistic guarantees on the satisfaction of a given STL property. Additionally, we can provide prediction intervals containing the quantitative satisfaction values of the given STL property for any user-specified confidence level. We compare this prediction interval with the interval we get using risk estimation procedures. We also propose a refinement procedure based on Gaussian Process (GP)-based surrogate models for obtaining fine-grained probabilistic guarantees over sub-regions in the parameter space. This in turn enables the CPS designer to choose assured validity domains in the parameter space for safety-critical applications. Finally, we demonstrate the efficacy of our technique on several CPS models.more » « less
An official website of the United States government
